Calculating Reuse Distance from Source Code

Sri Hari Krishna Narayanan, Paul Hovland
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439
{snarayan,hovland} @mcs.anl.gov

Abstract—The efficient use of a system is of paramount
importance in high-performance computing. Applications need
to be engineered for future systems even before the architecture
of such a system is clearly known. Static performance analysis
that generates performance bounds is one way to approach the
task of understanding application behavior. Performance bounds
provide an upper limit on the performance of an application
on a given architecture. Predicting cache hierarchy behavior
and accesses to main memory is a requirement for accurate
performance bounds. This work presents our static reuse distance
algorithm to generate reuse distance histograms. We then use
these histograms to predict cache miss rates. Experimental results
for kernels studied show that the approach is accurate.

Keywords-Computer
Cache memory

performance; Performance analysis;

I. INTRODUCTION

As architectures evolve, application writers have to un-
derstand how to engineer their applications to run at peak
performance. However, the value of peak performance derives
its meaning from the algorithm implemented, application de-
signed, and architecture used. From the architect’s standpoint,
peak performance is achieved when all the computational units
are kept busy. From the algorithm’s standpoint, asymptotic
complexity is used to describe how quickly it will execute.
Applications achieve high performance when an algorithm
is implemented in a way that takes advantage of all the
architectural features available. Often, this is far less than
the theoretical peak of a machine. Performance bounds allow
engineers to evaluate how close observed performance is to
what is achievable.

PBound is a tool that combines application information
and architectural information to generate realistic performance
bounds for an application running on a particular system [?].
Given an input source code, PBound generates the closed-form
expressions for floating point, load, and store requirements for
the code to execute. Using these expressions it can predict
an upper bound as a fraction of machine peak. However, it
cannot predict wall-clock time accurately because the cache
and memory behavior of the application is not captured by
these expressions.

Cache misses can be classified as cold, capacity, or conflict.
Cold or compulsory misses occur when a data element is
loaded into the cache for the first time. Capacity misses occur
because of the finite size of the cache, and conflict misses
occur because of the mapping of blocks in main memory
mapping to same position in the cache. This paper adds a

abcdeddbaf

Between the successive references to b
there are 3 unique references: ¢, d, and e

(a) Reuse distance for scalar references

for (1=0; i< N — M;
Ali] = A[i + M]

i++)
* B[i];

Array B has no reuse. Reference
Ali] reuses data accessed by Ali+M]

(b) Reuse distance for array references

Fig. 1. Examples of reuse distance

reuse-distance-based memory model to PBound allowing it to
predict cache hit/miss rates accurately. The algorithm acts on
the source code to determine all the reuse patterns available
in the code. This information can be combined with a variety
of cache architectures to study the appropriateness of making
an architectural design decision. However, the effect of loop
transformations such as loop distribution and loop fusion on
the reuse patterns in the code can be studied as well.

Reuse distance is a measure of the number of unique data
elements accessed between any two accesses to the same
element. Fig. 1(a) presents an example of reuse distance for a
set of scalar variables, and Fig. 1(b) shows the reuse distance
present in a simple loop. For least recently used (LRU) caches,
reuse distance can be used to accurately predict cache hit
rates [?]. In an LRU cache, if the size of the L; cache is
d, all accesses with reuse distance less than d will hit in [;
or some cache L,,, where m < .

The key contribution of this work is a static reuse distance
algorithm the can be used with programs written in imperative
programming languages such as C/C++ and Fortran. The
algorithm detects accesses to both statically allocated and
dynamically allocated arrays. By determining the volume of
unique data between accesses to the same array location,
the algorithm computes a reuse distance histogram for the
program. The histogram allows the memory behavior of ap-
plications built as a series of loops in C/C++ and Fortran to
be predicted. We have implemented the algorithm in PBound.

While there exist several accurate dynamic reuse distance

TABLE I
ACTIONS OF PBOUND WHEN UPON ENCOUNTERING NODES OF A PARTICULAR KIND IN THE AST.

Node Enountered

Action

Any Non-leaf Node

Node.Store < Y ,:1an0q. ChildNode.Store
Node.Load <= >_ 1} .1unode ChildNode.Load
Node.Operation <= > ;. :1unvoq. ChildNode.Operation

Variable Reference on LHS

Node.Store < Node.Store + 1

Variable Reference on RHS

Node.Load < Node.Load + 1

Operation

Node.Operation <— Node.Operation + 1

Function Call

Node.Store < Node.Store + FCall.Store
Node.Load < Node.LLoad + FCall.Load
Node.Operation <— Node.Operation + FCall.Operation

Loop

Node.Store <— Loopbody.Store * IterationCount
Node.Load <+ Loopbody.Load * IterationCount
Node.Operation <— Loopbody.Operation *IterationCount

+ Loopheader.Operation *IterationCount

estimation methods, the choice of a static algorithm fits into
PBound’s approach of avoiding the execution of code when
possible. This also means that the time taken to determine
the reuse distance for regular loops is independent of the size
of the loop bounds. Experimental results show that the reuse
model accurately predicts cache miss rates for key kernels.

This work cannot currently be used to predict miss rates
for multithreaded applications, where one thread’s accesses
can cause the eviction of another thread’s data from a cache.
However, this work is a first step towards understanding multi-
threaded behavior. Graphical processing units employ different
a memory hierarchy compared with CPUs. Therefore, the
predictions cache misses in this work are appropriate only for
CPUs. However, CPUs with the cache hierarchies considered
in this work are expected to continue to be used in future high-
performance computing systems. Because this work works
on source code, compiler optimizations that restructure the
code can result in a different observed reuse distance. It is
part of the planned future work of the code to consider code
transformations and their effect on the reuse distance.

The rest of the paper is organized as follows. Section II
discusses PBound, and Section III discusses related work. Sec-
tion IV presents our reuse distance algorithm. Section ?? dis-
cusses low-level implementation details. Section ?? presents
the experimental data. Section ?? discusses future work, and
Section ?? presents our conclusions.

II. PBOUND

PBound [?] is a tool for generating performance bounds
from source code. It counts the number of operations per-
formed by a code with a simple architectural description to
obtain the bounds on performance. PBound is built on the
ROSE compiler framework [?], [?] and can generate bounds
for codes written in C/C++ and Fortran. Given an input source
code, PBound traverses the code’s abstract syntax tree (AST)
from the leaf nodes to the root. For every kind of node,
the traversal generates generates closed-form expressions for
floating point operations, integer operations, loads, and stores
that can be attributed to a node. Table I summarizes the
actions of PBound when it encounters different nodes of

the AST. Consider a generalized axpy computation of the
form y = y + a1x1 + --- + apx,, Where aq,...,a, are
scalars and y, x1, ..., x, are one-dimensional arrays. Fig. 2(a)
shows the source code for n = 4. Fig. 2(b) shows the
output generated for the source code. Fig. 2(c) and (d) present
the parametrized expressions generated by PBound for the
assignment statement and loop in the procedure. PBound can
evaluate the possibility of using SIMD and fused operations
and adjusts the expressions accordingly.

The generated code is a slice of the original computation and
contains only the statements that are necessary for computing
the bounds. The parameterized counts in either the log file
or the transformed code can be evaluated either manually (by
substituting appropriate values for all variables) or by simply
compiling the generated source code and executing it in the
same manner as the original application. The generated code
contains a call to the pboundLogInsert function with
parametrized expressions for the number of loads, stores, and
arithmetic operations, with separate expressions for integer and
floating-point values. A simple runtime library implements
pboundLogInsert to keep track and output the loads,
stores, and arithmetic operations. Because the AST traversal of
the loop indicates that there are 4 x n floating-point operations
in the in loop, the generated code contains an expression
indicating that there are 4xn floating-point operations (as well
as other expressions). Since the generated code contains only
a few simple expressions, it usuall takes much less time to
execute than the original application. Thus, in many cases one
can compute the performance bounds for a large application
on much smaller resources.

PBound currently computes wall-clock time by using hy-
pothetical cache hit rates for the kernel. As expected, these
models do not match observed cache hit rates and thus lead to
inaccurate execution times computation. While the counters
for computation and load/stores computed by PBound are
accurate for different architectures and kernels, predictions of
wall-clock time are not accurate because the counters do not
reveal whether the data is from a particular cache level or
from main memory. The reuse distance model presented in
this paper will be used to accurately predict the hit rates at

different cache levels.

III. RELATED WORK

This Section presents related work in the areas of reuse
distance modeling and performance modeling.

A. Static Reuse Distance Models

Cascaval and Padua [?] present an algorithm to estimate the
number of cache misses by computing a stack histogram of
reuse for loop kernels. To generate the stack histogram, they
partition iteration spaces into regions with same incoming de-
pendences. For each dependence they compute the intervening
number of iterations and the array elements accessed within
them. To compute the histogram, they consider each com-
ponent of the iteration space, its incoming dependences, and
the array elements for that dependence. Using the histogram,
they are able to predict miss rates for associative and non-
associative LRU caches. In contrast, our work does not rely
on partitioning the iteration space. Therefore, we are are not
limited to single loop nests.

Generating static reuse distance for Matlab code has been
studied by Chauhan and Shei [?]. They present an efficient
algorithm for computing reuse distances at the source level
for whole programs, including inter-procedural data flow. For
their source analysis, they assume that the code has been
flattened, meaning that all expressions are broken down into
their simplest form by introducing temporaries. Our work
does not have this assumption because our anticipated users
are unlikely to rewrite code for analysis and is hence this
assumption a possible source of inaccuracy. Because we per-
form static analysis, in the future, we can use techniques such
as common subexpression elimination automatically. Because
their focus is on Matlab, where applications rely on libraries
and vector operations and not deeply nested loops, their work
is not directly usable for applications written in C/C++ and
Fortran. Moreover, our reuse distance algorithm is written in a
representation-independent format, we can apply it to a variety
of languages. In contrast to [?], however, our work readily
handles pointers, but cannot perform array section analysis.

Marin [?] presents a static binary analysis technique to
derive symbolic formulae that describe the pattern of locations
accessed by each memory reference. The formulae are used
to instrument the binary code and obtain reuse distance his-
tograms when the code is executed. Marin reasons that since
predicting reuse distance at the instruction level is error-prone,
executing the code is needed to account for data alignment in
memory. In order to build a scalable reuse distance predictor,
the author collects data from multiple executions with small
data sets.

B. Dynamic Reuse Distance Computation

Ding and Zhong [?] have developed a dynamic reuse
distance histogram generation method. They have built a tool
called LRUHistogramGenerator based on Pin [?] to examine
and instrument instructions that access memory locations.
Pin is a dynamic binary instrumentation framework for the

IA-32 and x86-64 instruction-set architectures that enables
the creation of dynamic program analysis tools. When the
instrumented instructions are executed, the memory locations
accessed by them are recorded. A tree is used to organize the
approximate last access time to memory locations and generate
a reuse distance histogram. Because this method examines
binary instructions, it is applicable to general code and can
be readily used for whole program analysis. Furthermore, the
authors show how predictions made for one input size can
be scaled to other input data sizes. Our method on the other
hand is more restrictive since it targets applications written as
loops that access arrays inside them. As with any dynamic
method, however, executing the application and analyzing
instructions can take a long time which makes changes to the
code expensive to re-analyze.

C. Performance prediction

Several commercial and research efforts exist to measure
and visualize the performance of applications running on
existing machines as well as simulators. Tools such as TAU [?]
sample hardware counter information to build a performance
profile of application execution. In contrast to these methods,
PBound is used to predict the upper bound of performance
of the application and does not rely on the execution of the
application to characterize its behavior. The roofline model [?]
is an intuitive visual performance model for multicore archi-
tectures to help identify which systems are a good match
for important kernels as well as to changes to the kernel to
improve their performance. The roofline model determines the
upper bound on the performance of a kernel depending on the
kernel’s operational intensity which is determined empirically.
In contrast to empirical measurement of the roofline model,
PBound determines the upper bound of the kernel’s perfor-
mance statically.

IV. REUSE DISTANCE ANALYSIS

This Section presents the dataflow algorithms that have been
implemented within PBound. The user invokes PBound as
usual and in addition to the counter values generated earlier,
PBound generates a reuse distance histogram. As will be
explained in Section ?? the algorithms require several other
tools as well. When PBound is invoked, a control flow graph
(CFQG) is created. The algorithms presented here operate on the
CFG. In Section IV-A we will present the definitions of data
structures within the data flow graph required to represent the
loops and array references. Following this, in Section IV-B
we associate each array reference with predecessor array
references that it may reuse. In Section IV-C we show how
the predecessors are ordered from nearest to furthest which
determines the correct predecessor for every array reference. In
Section IV-D we determine if an array reference can reuse its
own data and if it has spatial reuse. Then, in Section IV-E we
use the knowledge of predcessors and intervening statements
in the AST to determine the reuse distance histogram. We
use the matrix vector produce & transpose benchmark from

void axpy4(int n, double xy,
double al, double =xxI1,
double a2, double =xx2,
double a3, double *x3,
double a4, double xx4){
register int i;
for (i=0; i<=n—1; i++)
yl[i] = y[i] + al = x1[i] + a2 x x2[1i]
+ a3 x x3[i] + a4 x x4[i];

(a) Original code

#include ”pbound_list.h”
void axpy4(int n, double xy,
double al, double =xxI1,
double a2, double =xx2,
double a3, double *x3,
double a4, double xx4){
pboundLoglnsert (”axpy .c@6@5”,
2, 0, 5%xn+4,
n, 3*«n+1, 4x%n);

(b) Generated code

sesGmalim

1[5 LOADs, 1 STORE, 8FLOPs

_-® o
&8 _ @ S @
O ey L@
Lg/‘)p) m LoAD (RO
- LOAD
YOO D o @Y
AU

(c) Floating-point operations

Body
5N LOADs, N STOREs, 8N FLOPs

e
P N

i=0 / N iterations |j++ 5 LOADs, 1 STORE, 8 FLOPs
\— —

(d) For loops

Fig. 2. (a) Example code, (b) generated output code with parametrized
expressions,(c) traversal of assignment expression, (d) traversal of loop. The
generated code indicates the following counts: integer loads: 2, integer stores:
0, floating-point Loads: 5*n+4, floating-point stores: n; integer operations:
3n+1; floating point operations: 4n.

the SPAPT benchmarks suite [?] given in Fig. 3 as a running
example to explain the algorithms.

A. Preliminaries

The data flow algorithms require that the input code be
represented by the following data structures given below. Fig. 4
presents the data structures for the example.

e Loop: A quartet of loop index, lower bound, upper
bound, and step. {I;, LB;,UB;,S;}. The bounds must
be numeric; a restriction that is addressed in Section ??.

e Loop Nest LN: An ordered list {Loé, L;, Ly} of loops.

o Array Index Expression [E: An affine expression made
up of at least one loop index.

#define N 2500
#define M 2500
int main(void) {
int i, j;
double a[M][N],yl[N],y2[M],xI[M],x2[N];
for (i=0;i<=N—1:i++)
for (j=0;j<=N-1;j++) {
xI[i]=x1[il+ali][jI*yl[j];
\ X2[j1=x2[jl+ali][jI*y2[i];

return 0;

}

Fig. 3. Running example

LNy: {{i, 1, N-1, 1},{j, 1, N-1, 1}.}
ISy: {[ij]:0 <i <2499 && 1 < j < 2499 }

ARy: x1[i] — {x1, {i}}
DSy:{ISy, ARy}: {[In1] : 0 < Inl < 2499 }

ARy: a[il[jl— {a, {ij}}
DSQZ{ISl, ARQ}Z
{[In1,In2] : 0 < Inl < 2499 && 0 < In2 < 2499 }

ARs: yl[jl= {yl, {j}}
DS5:{I1S51, ARs}: {[In1] : 0 < Inl < 2499 }

ARy: x2[j1— {x2, {j}}
DSy:{IS1, AR4}: {[In1] : 0 < Inl < 2499 }

ARs: a[ill[jl— {a, {i,j}}
DS5${ISl, ARE,}Z
{(In1,In2] : 0 < Inl < 2499 && 0 < In2 < 2499 }

ARg: y2lil— {y2, {i}}
DSs:{IS1, ARg}: {[In1] : 0 < Inl < 2499 }

Stmt1: {ARl,ARg,ARg}
Stmtgl {AR4,AR5,AR6}
G6n5t7,Lt12 {DSl,DSQ,DS3}
G(BTLStthZ {DS4,DS5,DS@}
Procy: {Stmtq, Stmta}

Fig. 4. Data structures created

o Array Reference AR: A list of index expressions and an
array. {A{IFy..IE,}}

o Iteration Vector IV: An ordered list of values that the
loop indices in the loop nest can assume.

o Iteration Space IS: The union of all possible iteration
vectors.

o Data Space DSts ar: The projection of the iteration
space in the dataspace of the array in AR.

o Statement: The set of array references inside a loop.

e Gen;: The set of DS in statement .

o Procedure: An ordered list of loop nests.

Rap,—ar, = {DS1NDS;} = {[In1] : 0 < Inl < 2499 };

DV: {i-i} = {0}

Rar,— AR, = {DS3FIDS§} = {[Inl] : 0 < Inl < 2499 };
DV: {j-j} = {0}

Rar,—ar, = {DSsNDSy} = {[Inl] : 0 < Inl < 2499 };
DV: {j-j} = {0}

Rary,—ars = {DSsNDSs} = {[In1] : 0 < Inl < 2499 };
DV: {i-i} = {0}

RAR,—~AR, = {DS2NDSs} =
{[In1,In2] : 0 < In2 < 2499 && 0 < Inl < 2499 };
DV: {i-jj} = {0,0}

RARs—ARs = {DSsNDSs} =
{[Inl,InZ] 0 <1In2 <2499 && 0 < Inl < 2499 };
DV: {i-ij-} = {0.0}

RAR,—~ARs = {DS2NDSs} =
{[In1,In2] : 0 < In2 < 2499 && 0 < Inl < 2499 };
DV: {i-jj} = {0,0}

Fig. 5. Predecessor discovery and data reuse.

B. Predecessor Discovery

Algorithm 1 determines whether any two ARs in the code
can reuse data. Reuse between a predecessor reference p and
a current reference c is possible if ¢ and p access the same
array’s data space. The data that is reused depends on whether
c and p are in the same loop or not. If they are not in the same
loop, the data that is reused is an intersection of the two data
spaces. If ¢ and p are in the same loop, then loop carried
dependence should be considered. Formally, we define reuse
between c and p to be the following.

0 it Ao # A,
DSys. ar, N DSrs, ar, it LN, # LN,
DSis,,ar, N* DSis, AR, if LN, = LN,

Rep =

The operator N* is the loop-carried dependence opera-
tor. Loop-carried dependence is possible when DSis, ar.
is accessed by iteration vector IV, DSISP} AR, 1s accessed
by iteration vector IV, DSrs, ar, == DSis, ar,, and
1V, > IV,,. When LN, = LN,,, we define the distance vector
as DVpC = VZIEM — IEpl

Because data is reused from a predecessor and a successor,
the first step in our algorithm is to associate each reference
with every predecessor reference that could legally have reuse
with it. Because, a reference could reuse itself through loop
carried dependence, each AR is associated with itself as well.
We use an iterative dataflow algorithm that traverses the nodes
in the CFG. The iterative algorithm allows for the discovery of
predecessors due to back edges in the CFG as well. For now,
we limit ourselves to an intraprocedural algorithm because
we do not expect function calls in the kernels that we are
interested in. The output of the algorithm is a map between
each AR and an ordered list of ARs whose data space it
can reuse. Fig. 5 presents all the reuse that is output by the
algorithm for our example. Although Rs and Rg are not truly
possible, they are considered possible for now.

The algorithm can be described by three procedures. The

for (1 = 1; i < N; i++)
Xx = al[i1]; //Stmtl

for (i = 1; i < N; i++){
y = a[i]; //Stmt2
z = ali]; //Stmt3

}

Fig. 6. The ordering of predecessors will ensure that the AR in Stmt3 will
reuse the AR in Stmt2 and not the AR in Stmt3.

ISy {[i,j]1: 0 <i<2499 && 1 <j <2499 }

ARy: x1[i]: Self-temporal reuse in j; Spatial reuse:
ARs: a[i][j]: No self-temporal reuse; Spatial reuse:
AR3: y1[j]: Self-temporal reuse in i; Spatial reuse:
ARy: X2[j]: Self-temporal reuse in i; Spatial reuse:
ARs: a[i][j]: No self-temporal reuse; Spatial reuse:
ARg: y2[i]: Self-temporal reuse in j; Spatial reuse:

Yes
Yes
Yes
Yes
Yes
Yes

Fig. 7. Spatial and Self-temporal reuse.

first procedure, ReuseAlgorithm, iterates over the nodes in
the CFG and visits each of them until their InSet and OutSet
do not change. The InSet of a node is the set of nodes that are
possible predecessors. The OutSet is the set of predecessors of
the node and the node itself. Initially, all InSets and OutSets
are empty.

The VisitNode procedure performs a join operation over
all the incoming edges on the node and checks whether this
is different from the existing InSet. If the InSet for a node
has changed or if the node has never been visited before, the
Transfer procedure for each statement in the node is called.
If the output of Transfer is different from the OutSet of
the node, the output is assigned to the OutSet. Transfer
calculates the reuse possible between the references of the
input statement and its predecessors and stores it in an ordered
list.

C. Ordering the Predecessors

The ordering of predecessors is an important task. For two
predecessors, AR, and ARy, where LN, = LN, we first
consider the distance vector of the reuse. If DV),;, # DVpo,,

if DVp1, < DVpo,

then
. cl
o c2 if DVplc > D‘/pgc

If DV,1, = DVjyp, or LN, # LN, we pick the reference with
the fewer intervening statements/references. For the example
in Fig. 5, there is only one instance of reuse that crosses
statements. Therefore, ordering predecessors is not meaning-
ful. However, for the example shown in Fig. 6 the ordering of
predecessors will ensure that the AR in Stmt3 will reuse the
AR in Stmt2 and not the AR in Stmt3.

Closer
Predecessor

D. Determining Spatial and Self-Temporal Reuse

A reference AR is determined to have spatial reuse in a
loop nest L if the last index expression(I F') of AFE is made up
exclusively of a loop index L; such as for any loop L where
k > [does not appear in any other /E in AR. A reference

Algorithm 1: Reuse Algorithm

Input: N: List of Nodes in the CFG
ReuseAlgorithm(N)
InSet ey < 0
OutSetpen < 0
forall the n € N do
| Visited, < false

repeat

changed < false

foreach n in N do

| changed <— changed && VisitNode(n)

until changed # true;
return Reuse

VisitNode(Node n)
changed < false
templnSet < Upepredessor(n)

if tempInSet # InSet,, then
InSet,, < tempInSet

| changed < true
if changed # false ©/ Visited, # true then
Visited,, + true
changed < false
tempOutSet < InSet,
for statement s € N do
| tempOutSet <— Transfer(tempOutSet, s)
if tempOutSet # OutSet,, then
OutSet,, + tempOutSet
L changed < true

rgturn changed

Transfer (inSet, s)
Data: Def,: Array references used in s
Data: Use,: Array references defined in s
Gen; < Def; U Use;
foreach Statement p € inSet do
Reusegy, <+ (Gen; N Geny,— s.t.

L Ak(Order(i, k) < Order(i, p))
inSet < inset U s
return inSet

AR is determined to have self-temporal reuse with loop L;
if L; does not appear in any IFE that makes up AR. While
computing the reuse output in Algorithm 1, we keep track of
whether the reuse has spatial reuse and whether self-temporal
reuse is possible. Because of possible reuse with other ARs
in a loop nest, the self-temporal reuse that is possible is not
always manifest.

E. Computing the Reuse Distance Histogram

Algorithm ?? is used to compute the histogram. Its inputs
are the results of Algorithm 1. For every pair of references
AR, and AR, where AR, reuses AD,, the statements that
occur in the node containing the AR and ARy of the reuse as
well as any intervening nodes are determined as a byproduct of

Algorithm 1. Given a statement or set of statements, we define
the operator |s|};_[;] to be the size of the data space accessed
by statement s for the loop iterations between iteration vectors
[i] and [¢']. IV is the first iteration that accesses AR, and
1Vy is the corresponding iteration that accesses ARy.

Reuse can occur when AR, and ARy are in the same loop
or in separate loops. Reuse can also occur when AR, and ARy
are the same reference through self-temporal reuse. This case
is handled by Algorithm ??. If AR, and AR, are separate
and in the same loop, the reuse distance is influenced by the
partially executed loop iterations in which AR, and AR, are
accessed. When AR and ARy, are not in the same loop, the
reuse distance is the sum of data space accessed between IV
and that occur before IV.

Algorithm ?? is used to determine the self-reuse of ref-
erences that occur when the size of the IV is larger than
the dataspace of AR. The algorithm iterates over surrounding
loops; and based on whether the loops with self-temporal occur
in the innermost position or the middle of the loop nest, it
computes the number of times elements are reused and the
reuse distance for this loop. The algorithm assumes that loops
with reuse occur together and are not separated by other loops.
This assumption can be overcome if the loop nest is rewritten
to place loops with temporal reuse together in the loop nest.

Algorithm 2: Histogram Computation

ComputeHistogram (ReuseOutput)
foreach Pair of references (ARs, ARy) in € ReuseOutput

do
Ss < Statement containing AR

Sq < Statement containing ARy

B, <+ Statements in Node contaiging AR

By + Statements in Node containing AR,

Bsp < Partial Statements containing AR

Bgp < Partial Statements containing AR,

1V, < First iteration vector for AR,

1V, < First iteration vector for AR,

if AR, and ARy are the same reference then
Countgq +
ComputeSelfTemporalReuseDistance(S5)

else if S; and S, are in the same loop then

L Countsq < |Bsplirv,) + |Bsp|[IVs] + |de|[IVd]

else
N gets Intervening Nodes
Countsq < |BSP|[IV5_)IUB] + ‘N|[ILB_>IUB] +
| Bapl 1, 5 —1v,]

HiStogram[Countsd] — |ARS|[ReuseOutput]

V. IMPLEMENTATION

We have interfaced the existing PBound tool described in
Section II with a representation-independent program analysis
tool called OpenAnalysis [?]. OpenAnalysis uses the AST
created by a compiler to generate a call graph and control flow

Algorithm 3: Compute SelfTemporalReuseDistance

ComputeSelfTemporalReuseDistance (S5)
foreach SurroundingLoop l in SurroundingLoopNest L

do

elementsreused < 0

reusedistance < oo

lowerlooptimes < 0

loopitersize <— UB; — LB,

looptimes <+ 0

if Ss does not have temporal reuse in | then
if reusedistance==00 then

#define N 2500
for (i=0;i<=N—-1;i++) {
templ = x1[i];
temp2 = y_2[i];
for (j=0;j<=N-1;j++)

temp3 =ali][j]:
templ=templ+temp3xy_1[]];
x2[j1=x2[j]+temp3*temp2;

}
x1[i] =
}

(a) Modified mvt

templ ;

if elementsreused==0 then
if looptimes == 0 then #define STREAM_ARRAY_SIZE 1000000
| looptimes <« (loopitersize -1); for (j=0; j<STREAM_ARRAY_SIZE; j++)
else a[j] = b[jl+scalarxc[j];
L l(i;)Ptlmes < looptimes * (loopitersize (b) Stream triad
f #define N 350
else di | i for (i = 0; i <N; i++){
reusedistance <— elementsreused, . for (j = 0; j < N; j++){
elemf?ntsr.eused < elementsreused blillj] = alilljl —1;
| (loopitersize -1); }
- }
else for (i = 0; i <N; i++){
elementsreused < elementsreused * for (j = 0; j < N; j++){
| (loopitersize -1); ylilljl = alillj];
else }

if reusedistance==c0 then
if looptimes == 0 then
if elementsreused==0 then
| elementsreused < loopitersize;

for (i = 0; i < N; i++){
else for (j = 0; j < N; j++){
elementsreused < elementsreused * bli]lj] = alilljl —1;
loopitersize; ylilljl = al[illj];
else }

reusedistance <+ 0;
elementsreused < looptimes *
loopitersize;

| looptimes «+ 0;

(d) loop fusion

#define N 1024
#define M 32
double C[N][N], A[N][M], B[M][N];

else for (i = 0; i<N;i++){
elementsreused <— elementsreused for (j = 0; j<N:;j++){
| *loopitersize; temp = 0;

L b for (k = 0; keM:;k++){
Histogram[reusedistance] <— Histogram[reusedistance] + temp += A[i][k] = B[k]I[j];
elementsreused

Histogram[oo] < Histogram[co] + |L| - elementsreused Clil[j] = temp;

}

(e) mxm long-and-skinny

Fig. 8. Benchmarks studied

graphs and performs alias analysis, DUUD chains, side-effect
analysis, liveness analysis, activity analysis and linearity anal-
ysis. Using the existing infrastructure for dataflow analysis, we
implemented our static reuse distance algorithm that generates
information regarding the reuse of array data structures. Imple-
menting the algorithm in a representation independent format
allows it to be used by tools other than PBound. The reuse

distance algorithms are invoked automatically when PBound
is invoked on the input code.

Gen,; is calculated by the polyhedral analysis tool Ome-
gaLibrary [?] using the indices that are present in the array

references and the loop bounds. Omegal ibrary is also used to
perform the union, intersection, and difference operations on
different data spaces. SymPy is a Python library for symbolic
mathematics [?]. It was used to manipulate the array index
expressions symbolically and compute distance vectors.

VI. EXPERIMENTAL SETUP

We use the five benchmarks shown in Fig. ?? to evaluate
the algorithm. For the mxm benchmark, we can exchange
the values of N and M to make the array either long and
skinny or short and fat. The mvt benchmark is the running
example that we have used in the code, with modifications that
a compiler makes. We discuss the possibility of automatically
performomg code transformations in Section ??.

In order to validate the reuse histogram generated by
PBound, we compare it against the histogram generated by
LRUHistogramGenerator [?]. LRUHistogramGenerator is built
on the binary instrumentation tool Pin. It instruments instruc-
tions that refer to memory locations. When the instrumented
instructions are executed, the memory locations accessed by
them are recorded, and a reuse distance histogram is generated.
By default, LRUHistogramGenerator generates a histogram for
the whole application binary including the operating system
instructions to start the application. Additionally, LRUHis-
togramGenerator counts only the first access to a packed (64-
bit, 128-bit) memory location as a unique access. Subsequent
accesses to members of the packed location are counted
as reuse. To enable validation, we have made very minor
modifications to this default behavior and refer to this modified
tool as LRUHistogramGenerator* in the rest of the paper.
While it would be possible to modify PBound to obtain
the same values as LRUHistogramGenerator, it would have
required an unacceptable change to the algortihms that PBound
is build upon. Moreover, the use case for PBound relies on the
unmodified histogram values that PBound generates.

Fig. ?? compares the reuse distance histogram generated
by PBound and LRUHistogramGenerator* for the four bench-
marks. One can see that for all benchmarks PBound and
LRUHistogramGenerator* match well. Where the graph shows
differing reuse distance values, the reason that a small differ-
ence in the reuse distance value close to the boundary of a bin
size can place entries in different bins. For the mvt benchmark,
one sees that for the smallest reuse distance (64 bytes),
LRUHistogramGenerator* has a high number of occurrences,
while PBound has next to none. This is because PBound
currently does not consider the reuse of scalar variables while
LRUHistogramGenerator* does include them in its counts.
Because scalar variables are held in registers, it will be shown
below that overlooking the reuse distance occurrences caused
by them will not cause a difference in the cache miss rate.

A. Cache Hit Rate Results

Using the histograms generated for the different bench-
marks, we generate cache miss rates for an LRU cache
hierarchy where each cache is fully associative. We compare
these against the cache simulator provided by the PIN tool

TABLE I
DETAILS OF CACHE HIERARCHY SIMULATED

[Level | Size [Line Size | Line Count [Associativity [Store policy |
[L1 [32 KB [64 bytes [512 [Fully [Store Allocate]
[L2 [16MB | 64bytes | 262144 | Fully | Store Allocate |

allcache [?]. While measurements can be made against a
real system, we find that the hardware prefetcher reduces
the observed miss rates. We plan to incorporate the effect
of prefetching at a later point, as discussed in Section ??.
Allcache was modified to instrument only those memory
access instructions that occur inside the function of interest.
This allowed us to ignore accesses attributed to sources such as
the loading of the application binary and initialization routines.
While such accesses are of interest in contexts where the
entire application’s execution is considered, they are not of
interest in validating PBound’s predictions. Allcache allows
us to describe a cache hierarchy of arbitrary depth.

Cache sizes, associativity, and line sizes can be specified.
Caches can also specify whether stores should result in allo-
cation. Instruction caches, data caches, and unified caches can
be modeled by appropriate specification of the hierarchy and
instrumentation routines. When each instrumented instruction
is executed, the memory address is searched for in the cache
hierarchy, and a hit or a miss at the appropriate cache levels
is determined. Table ?? outlines the cache hierarchy we
employed in our experiments. Based on the histogram, we
can predict that any reuse with distance greater than L1 cache
size will miss in L1 and any reuse with distance greater than
L2 cache size will miss in L2. We note, however that once a
cache block is loaded into the cache, spatial reuse will affect
the miss rate. Therefore, we consider spatial reuse as well
while making our predictions. Based on this approach we
compare the miss rate predicted by PBound and that observed
by allcache for the different benchmarks. Fig. ?? shows that
there is a high agreement between the two. However, for mxm
long-and-skinny, PBound’s predictions for L1 miss rates are
much higher than the rate determined by allcache. The reason
is that PBound determines that there exists no spatial reuse
in array B whereas allcache sees spatial reuse. This may be
because of compiler transformations that restructure the loop;
further investigation is merited.

VII. FUTURE WORK

In this Section we address the work required to improve the
accuracy and applicability of the algorithms.

A. Improved Anaysis

We would like to analyze codes with symbolic loop bounds.
Currently they are restricted to numeric bounds. While the
descriptions of the array references and data spaces in Al-
gorithm 1 will remain the same, additional constrains that
bind the symbolic bounds to numerical values will generate
numeric reuse results without changing the source code. To
study the effect of tiling, we will have to add the ability
to introduce additional loops and express the bounds of one

BPBound 0ULRUHistogramGenerator*

3.00E+07
2.50E+07 |
2.00E+07
1.50E+07
1.00E+07
5.00E+06 ﬂ
0.00E+00 —
Q o [+ o]] Q]] o o] Q] o o w
TR B S Y& ¥ ZESEEES R
- &« 1 2 8 3 3 8§ & - ~ =z
S & 5 :
4
(a) mvt
BPBound OLRUHistogramGenerator*
4.00E+05
3.50E+05
3.00E+05
2.50E+05
2.00E+05
1.50E+05
1.00E+05
5.00E+04
0.00E+00
g ggeggegeggeegeeeget
CER BTN EEHIREEETNZ
- o~ w I.ZI.
(c) Loop fission
BPBound OLRUHistogramGenerator*
4.00E+07
3.50E+07 —
3.00E+07
2.50E+07
2.00E+07
1.50E+07
1.00E+07
5.00E+06
0.00E+00 -
o o m m o o o m o o o m o o o o w
T TR o YTEYEEETEELE RS
- ~ wn - © -3 ﬂ n ; E

(e) Mxm long and skinny
Fig. 9.

BPBound OLRUHistogramGenerator*
3.50E+06
3.00E+06
2.50E+06
2.00E+06
1.50E+06
1.00E+06
5.00E+05
000E+00 M O O O 0 0 O 0O O 0 0 0O O O 0 @0 Ww
TR B L Y& Y ZEEEEE SR
88 3 e § 3T ggy -~z
- o~ w 2
(b) Stream triad
BPBound UOLRUHistogramGenerator*
4.00E+05
3.50E+05
3.00E+05
2.50E+05
2.00E+05
1.50E+05
1.00E+05
5.00E+04
000E+00 e g 8 ﬁ m o o o m o o o m m o o E
S z
4
(d) Loop fusion
BPBound OLRUHistogramGenerator*
1.20E+06
1.00E+06 M
8.00E+05
6.00E+05
4.00E+05
2.00E+05
0.00E+00 o
. m o o o m o o o m o o o o m o o E
- o~ w w
=z

(f) Mxm short and fat

Comparison of static and dynamic reuse distances. The x-axis is the reuse distance in bins of size starting at 64 bytes. The last bin indicates that

there is no reuse. The y-axis is the number of instances of reuse at a particular reuse distance.

loop as an affine function of another loop. We would also
like to handle sparse data accesses by using user provided
descriptions of sparse data layout. Currently, changes to the
code require a complete reanalysis of the source code. The
reason is that objects such as array references are linked
implicitly to the Rose AST node that they are formed from.
We will study whether the intermediate values of code analysis
can be represernted in a format that breaks this linkage, so that
the values can be changed on demand.

B. Bound Generation

We will extend and validate our algorithms for non-fully
associative cache hierarchies. We will combine the prediction
of cache miss rate with the values gained from counting the
number of floating-point operations to compute upper bounds
on application performance and compute wall-clock execution
time. When the bounds and execution times are validated for
observable machines, we will explore future architectures that

may be expected in the realm of high-performance computing.
Exascale machines are expected to have reduced memory
and high communication cost. Using PBound to predict the
utilization of different memory configurations is one way
to evaluate the performance of applications on these future
machines.

C. Use of Prefetching

In order to utilize the reuse distance algorithm to predict
misses in current and future machines, the behavior of the
hardware prefetcher will have to be included. The hardware
prefetcher works by recognizing streaming access patterns.
Marin et al. [?] describe an approach based on static analysis
and simulation in order to understand whether the memory
access patterns of applications are amenable to hardware
prefetching and to identify opportunities for improving their
prefetch friendliness. Incorporating such an approach will
allow us to statically determine the memory behavior using
only source code.

D. Models to Drive Autotuners

Autotuning is a method of generating semantically equiv-
alent multiple versions of the same code. The automated
versions are generated from specifications of compiler trans-
formations for the code. By generating these different versions
and empirically measuring their performance, the best version
can be selected. The transformations can be guided by the
reuse distance model in order to select the loops to unroll, the
unroll factors and the references to prioritize. Furthermore,
while empirically evaluating the different versions, the bound
generated by PBound can guide the empirical evaluation by
presenting a criterion for stopping the search process once a
variant that is close the bound is found.

VIII. CONCLUSIONS

We have created a new static analysis based reuse distance
algorithm that analyzes the source code of a program written in
an imperative programming language such C/C++ or Fortran
and generates reuse distance histograms. The algorithm has
been implemented in PBound and the histograms generated by
our reuse distance algorithm match the histograms determined
by a dynamic reuse distance calculation method. The generated
histograms have been used for estimating the cache hit rates
for a CPU cache hierarchy. The cache hit rates computed by
a binary analysis method match those computed by using our
reuse distance algorithm.

ACKNOWLEDGEMENT

This work was funded by a grant from the U.S. Depart-
ment of Energy, Office of Science, under contract DE-AC02-
06CH11357

REFERENCES

[1] Intel PIN web page. https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool
[2] SymPy web page. http://sympy.org

W L1 miss rate (PBound) ® L1 miss rate (allcache)
L2 miss rate (PBound) ® L2 miss rate (allcache)

50
40
30
20
L AN BN BE

Stream triad Loop fission Mxm short-and-fat

Loop fusion Mxm long-and-skinny

Fig. 10. Comparison of cache miss rates predicted by PBound and computed
by PIN’s allcache tool.

[3] Balaprakash, P., Wild, S.M., Norris, B.: Spapt: Search problems
in automatic performance tuning. Procedia Computer Science 9(0),
1959 — 1968 (2012), http://www.sciencedirect.com/science/article/pii/
S1877050912003353, proceedings of the International Conference on
Computational Science, {ICCS} 2012

[4] Casgaval, C., Padua, D.A.: Estimating cache misses and locality using
stack distances. In: Proceedings of the 17th Annual International Con-
ference on Supercomputing. pp. 150-159. ICS 03, ACM, New York,
NY, USA (2003), http://doi.acm.org/10.1145/782814.782836

[5] Chauhan, A., Shei, C.Y.: Static reuse distances for locality-based opti-
mizations in MATLAB. In: Proceedings of the 24th ACM International
Conference on Supercomputing. pp. 295-304. ICS ’10, ACM, New
York, NY, USA (2010), http://doi.acm.org/10.1145/1810085.1810125

[6] Ding, C., Zhong, Y.: Predicting whole-program locality through reuse
distance analysis. In: Proceedings of the ACM SIGPLAN 2003 Confer-
ence on Programming Language Design and Implementation. pp. 245—
257. PLDI ’03, ACM, New York, NY, USA (2003), http://doi.acm.org/
10.1145/781131.781159

[7]1 Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott,
D.: The omega library interface guide. Tech. rep., College Park, MD,
USA (1995)

[8] Marin, G.: Scalable cross-architecture predictions of memory hierarchy
response for scientific applications. In: Proceedings of the Symposium
of the Las Alamo s Computer Science Institute, Sante Fe, NM, USA
(2005)

[9]1 Marin, G., McCurdy, C., Vetter, J.S.: Diagnosis and optimization of
application prefetching performance. In: Proceedings of the 27th Inter-
national ACM Conference on International Conference on Supercom-
puting. pp. 303-312. ICS 13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2464996.2465014

[10] Narayanan, S.H.K., Norris, B., Hovland, PD.: Generating performance
bounds from source code. In: Proceedings of the First International
Workshop on Parallel Software Tools and Tool Infrastructures (PSTI
2010). pp. 197-206 (2010), also available as Preprint ANL/MCS-P1685-
1009

[11] Quinlan, D.: ROSE web page. http://rosecompiler.org

[12] Schordan, M., Quinlan, D.: A source-to-source architecture for user-
defined optimizations. In: JMLC’03: Joint Modular Languages Con-
ference. Lecture Notes in Computer Science, vol. 2789, pp. 214-223.
Springer Verlag (Aug 2003)

[13] Shende, S.S., Malony, A.D.: The tau parallel performance system. Int.
J. High Perform. Comput. Appl. 20(2), 287-311 (May 2006), http://dx.
doi.org/10.1177/1094342006064482

[14] Strout, M.M., Mellor-Crummey, J., Hovland, P.: Representation-
independent program analysis. In: Proceedings of the sixth ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE) (Sep 5-6 2005)

[15] Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual
performance model for multicore architectures. Commun. ACM 52(4),
65-76 (Apr 2009), http://doi.acm.org/10.1145/1498765.1498785

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by or on
behalf of the Government.

